Septic B-spline Collocation Method for Numerical Solution of the Generalized Nonlinear Schrodinger Equation
نویسندگان
چکیده
Bu çalışma, genelleştirilmiş lineer olmayan Schordinger (GNLS) denkleminin yüksek doğruluklu sayısal çözümünü elde etmek içindir. Çalışmada iki farklı zaman parçalanması kullanılacaktır. İlk doğruluğu olan ve literatürde iyi bilinen Crank-Nicolson yöntemi, ikinci ise tek adımlı dördüncü mertebeden doğruluğa sahip yöntemdir. Zaman için genel bir yöntem kullanıldıktan sonra konum septik B-spline fonksiyonların kullanıldığı kolokasyon yöntemi uygulandıktan denklem sistemi edilecektir. Denklem Matlab paket programı yardımıyla çözülürken öncelikle iç iterasyonlu lineerleştirme kullanılacak istenilen kadarki çözümler iteratif olarak bulunacaktır Son solitary dalgasının yayılımı test problemi kullanılarak önerilen metotlar edilmiştir.
منابع مشابه
Septic B-Spline Collocation Method for Numerical Solution of the Kuramoto-Sivashinsky Equation
In this paper the Kuramoto-Sivashinsky equation is solved numerically by collocation method. The solution is approximated as a linear combination of septic B-spline functions. Applying the Von-Neumann stability analysis technique, we show that the method is unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions....
متن کاملExponential B-spline collocation method for numerical solution of the generalized regularized long wave equation
The aim of the present paper is to present a numerical algorithm for the time-dependent generalized regularized long wave equation with boundary conditions. We semi-discretize the continuous problem by means of the Crank–Nicolson finite difference method in the temporal direction and exponential B-spline collocation method in the spatial direction. The method is shown to be unconditionally stab...
متن کاملB-SPLINE COLLOCATION APPROACH FOR SOLUTION OF KLEIN-GORDON EQUATION
We develope a numerical method based on B-spline collocation method to solve linear Klein-Gordon equation. The proposed scheme is unconditionally stable. The results of numerical experiments have been compared with the exact solution to show the efficiency of the method computationally. Easy and economical implementation is the strength of this approach.
متن کاملnumerical solution of the rosenau equation using quintic collocation b-spline method
in this paper , the quintic b-spline collocation scheme is employed to approximate numerical solution of the kdv-like rosenau equation . this scheme is based on the crank-nicolson formulation for time integration and quintic b-spline functions for space integration . the unconditional stability of the present method is proved using von- neumann approach . since we do not know the exact solution...
متن کاملCubic B-spline Collocation Method for Numerical Solution of the Benjamin-Bona-Mahony-Burgers Equation
In this paper, numerical solutions of the nonlinear Benjamin-Bona-Mahony-Burgers (BBMB) equation are obtained by a method based on collocation of cubic B-splines. Applying the Von-Neumann stability analysis, the proposed method is shown to be unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions. The L∞ and L2 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Eski?ehir Türk Dünyas? uygulama ve ara?t?rma merkezi Bili?im dergisi
سال: 2023
ISSN: ['2687-606X']
DOI: https://doi.org/10.53608/estudambilisim.1296980